如何公平的洗牌

/ 0评 / 0

洗牌,显然是一个随机算法了。随机算法还不简单?随机呗。把所有牌放到一个数组中>,每次取两张牌交换位置,随机 k 次即可。

如果你的答案是这样,通常面试官会进一步问一下,k 应该取多少?100?1000?10000?

很显然, 取一个固定的值不合理。如果数组中有 1000000 个元素,随机 100 次太少;如果数组中只有 10 个元素,随机 10000 次又太多。一个合理的选择是,随机次数和数组中元素大小相关。比如数组有多少个元素,我们就随机多少次。

这个答案已经好很多了。但其实,连这个问题的本质都没有触及到。此时,面试官一定会狡黠地一笑:这个算法公平吗?

我们再看问题:设计一个 公平 的 洗牌算法。

如何公平洗牌

问题来了,对于一个洗牌算法来说,什么叫“公平”?这其实是这个问题的实质,>我们必须定义清楚:什么叫公平。

一旦你开始思考这个问题,才触及到了这个问题的核心。在我看来,不管你能不能最终给出正确的算法,如果你的思路是在思考对于洗牌算法来说,什么是“公平”,>我都觉得很优秀。

因为背出一个算法是简单的,但是这种探求问题本源的思考角度,绝不是一日之功。别人告诉你再多次“要定义清楚问题的实质”都没用。这是一种不断面对问题,不断解决问题,逐 渐磨炼出来的能力,短时间内无法培训。

这也是我经常说的,面试不是标准化考试,不一定要求你给出正确答案。面试的关键,是看每个人思考问题的能力。

说回我们的洗牌算法,什么叫公平呢?一旦你开始思考这个问题,其实答案不难想到。洗牌的结果是所有元素的一个排列。一副牌如果有 n 个元素,最终排列的可能性一共有 n! 个。公平的洗牌算法,应该能等概率地给出这 n! 个 结果中的任意一个。

如思考虑到这一点,我们就能设计出一个简单的暴力算法了:对于 n 个元素,生成所有的 n! 个排列,然后,随机抽一个。

这个算法绝对是公平的。但问题是,复杂度太高。复杂度是多少呢?O(n!)。因为,n 个元素一共有 n! 种排列,我们求出所有 n! 种排列,至少需要 n! 的时间。

换个思路洗牌

我们再换一个角度思考“公平”这个话题。其实,我们也可以认为,公平是指,对于生成的排列,每一个元素都能独立等概率地出现在每一个位置。或者反过来,每 一个位置都能独立等概率地放置每个元素。

基于这个定义,我们就可以给出一个简单的算法了。说这个算法简单,是因为他的逻辑太容易了,就一个循环:

for(int i = n - 1; i >= 0 ; i -- )
    swap(arr[i], arr[rand(0, i)]) // rand(0, i) 生成 [0, i] 之间的随机整数

这么简单的一个算法,可 以保证上面我所说的,对于生成的排列,每一个元素都能独立等概率的出现在每一个位置。或者反过来,每一个位置都能独立等概率的放置每个元素。

大家可以先简单的>理解一下这个循环在做什么。其实非常简单,i 从后向前,每次随机一个 [0…i] 之间的下标,然后将 arr[i] 和这个随机的下标元素,也就是 arr[rand(0, i)] 交换位置。

大家注意,由于每次是随机一个 [0…i] 之间的下标,所以,在每一轮,是可以自己和自己交换的。

这个算法就是大名鼎鼎的 Knuth-Shuffle,即 Knuth 洗牌算法。

理解算法

是时候仔细的看一下,这个简单的算法,为什么能做到保证:对于生成的排列,每一个元素都能等概率的出现在每一个位置了。

其实,简单的吓人:)

在这里,我们模拟一下算法的执行过程,同时,对于每一步,计算一下概率值。

我们简单的只是用 5 个数字进行模拟。假设初始的时候,是按照 1,2,3,4,5 进行排列的。

那么,根据这个算法,首先会在这五个元素中选一个元素,和最后一个元素 5 交换位置。假设随机出了 2。

下面,我们 计算 2 出现在最后一个位置的概率是多少?非常简单,因为是从 5 个元素中选的嘛,就是 1/5。实际上,根据这一步,任意一个元素出现在最后一个位置的概率,都是 1/5。

下面,根据这个算法,我们就已经不用管 2 了,而是在前面 4 个元素中,随机 一个元素,放在倒数第二的位置。假设我们随机的是 3。3 和现在倒数第二个位置的元素 4 交换位置。

下面的计算非常重要。3 出现在这个位置的概率是多少?计算方式是这样的:

其实很简单,因为 3 逃出了第一轮的筛选,概率是 4/5, 但是 3 没有逃过这一轮的选择。在这一轮,一共有4个元素,所以 3 被选中的概率是 1/4。因此,最终,3 出现在这个倒数第二的位置,概率是 4/5 * 1/4 = 1/5。

还是 1/5 !

实际上,用这个方法计算,任意一个元素出现在这个倒数第二位置的概率,都是 1/5。

相信聪明的同学已经了解了。我们再进行下一步,在剩下的三个元素中随机一个元素,>放在中间的位置。假设我们随机的是 1

关键是:1 出现在这个位置的概率是多少?计算方式是这样的:

即 1 首先在第一轮没被选中,概率是 4/5,在第二轮又没被选中,概率是 3/4 ,但是在第三轮被选中了,概率是 1/3。乘在一起,4/5 * 3/4 * 1/3 = 1/5。

用这个方法计算,任意一个元素出现在中间位置的概率,都是 1/5。

这个过程继续,现在,我们只剩下两个元素了,在>剩下的两个元素中,随机选一个,比如是4。将4放到第二个位置

然后,4 出现在这个位置的概率是多少?4 首先在第一轮没被选中,概率是 4/5;在第二轮又没被选中,概率是 3/4;第三轮还没选中,概率是 2/3,但是在第四轮被选中了,概率是 1/2。乘在 一起,4/5 * 3/4 * 2/3 * 1/2 = 1/5。

用这个方法计算,任意一个元素出现在第二个位置的概率,都是 1/5。

最后,就剩下元素5了。它只能在第一个位置呆着了。

那么 5 留在第一个位置的概率是多少?即在前 4 轮,5 都没有选中的概率是多少?

在第一轮没被选中,概率是 4/5;在第二轮又没被选中,概率是 3/4;第三轮还没选>中,概率是 2/3,在第四轮依然没有被选中,概率是 1/2。乘在一起,4/5 * 3/4 * 2/3 * 1/2 = 1/5。

算法结束。

你看,在整个过程中,每一个元素出现在每一个位置的概率,都是 1/5 >!

所以,这个算法是公平的。

当然了,上面只是举例子。这个证明可以很容易地拓展到数组元素个数为 n 的任意数组。整个算法的复杂度是 O(n) 的。

文章转载知乎:https://www.zhihu.com/question/26934313/answer/743798587

发表评论

电子邮件地址不会被公开。 必填项已用*标注